Maximizing Line Segment Cuts Problem with dynamic programming


Introduction:

In this article, we will discuss the Maximizing Line Segment Cuts algorithm. Given a line segment of length N and three possible cut lengths (x, y, and z), our goal is to maximize the total number of cut segments. We will explain the approach and provide a step-by-step algorithm to solve this problem efficiently. Let's dive in!

 


Problem Statement:

Given a line segment of length N, we need to cut it in such a way that the cut length each time is either x, y, or z. Our objective is to maximize the total number of cut segments.

 

Approach:

To solve this problem, we can use a dynamic programming approach. We'll create an array, dp[], where dp[i] represents the maximum number of cuts possible for a line segment of length i. Initially, all values in dp[] are set to -1, indicating that the corresponding length is not possible.

 

Algorithm:

  1. Initialize the dp[] array with -1 values and set dp[0] = 0, as the number of cuts for a length of 0 is 0.
  2. Iterate through each length from 0 to N:

   - If dp[i] is -1, skip the current length as it is not possible to cut.

   - If cutting a segment of length x is possible (i + x <= N), update dp[i + x] as max(dp[i + x], dp[i] + 1).

   - If cutting a segment of length y is possible (i + y <= N), update dp[i + y] as max(dp[i + y], dp[i] + 1).

   - If cutting a segment of length z is possible (i + z <= N), update dp[i + z] as max(dp[i + z], dp[i] + 1).

  1. If dp[N] is still -1, set dp[N] = 0, as it means no segment can be cut.
  2. Return dp[N] as the maximum number of cuts possible for the given line segment length N.

 

Let's understand the algorithm with the help of examples:

 

Example 1:

N = 4, x = 2, y = 1, z = 1

 

dp[]: -1 -1 -1 -1 -1

       0 -1 -1 -1 -1

 

Iterating through each length:

Length 0: dp[0] = 0

Length 1: dp[1] = max(dp[1], dp[0] + 1) = max(-1, 0 + 1) = 1

Length 2: dp[2] = max(dp[2], dp[0] + 1) = max(-1, 0 + 1) = 1

Length 3: dp[3] = max(dp[3], dp[1] + 1) = max(-1, 1 + 1) = 2

Length 4: dp[4] = max(dp[4], dp[2] + 1) = max(-1, 1 + 1) = 2

 

The maximum number of cuts possible is 2.

 

Example 2:

N = 5, x = 5, y = 3, z = 2

 

dp[]: -1 -1 -1 -1 -1 -1

       0 -1 -1 -1 -1 -1

 

Iterating through each length:

Length 0: dp[0] = 0

Length 1: dp[1] = max(dp[1], dp[0] + 1) = max(-1

 

, 0 + 1) = 1

Length 2: dp[2] = max(dp[2], dp[0] + 1) = max(-1, 0 + 1) = 1

Length 3: dp[3] = max(dp[3], dp[0] + 1) = max(-1, 0 + 1) = 1

Length 4: dp[4] = max(dp[4], dp[0] + 1) = max(-1, 0 + 1) = 1

Length 5: dp[5] = max(dp[5], dp[5 - 5] + 1) = max(-1, 0 + 1) = 1

 

The maximum number of cuts possible is 1.

Code:

#include <bits/stdc++.h>

using namespace std;

 

class Solution

{

public:

    // Function to find the maximum number of cuts.

    int maximizeTheCuts(int n, int x, int y, int z)

    {

        // Array to store the number of cuts at each length

        int dp[n + 1];

 

        // Initialize all values with -1

        memset(dp, -1, sizeof(dp));

 

        // If the length of the rod is 0, then total cuts will be 0.

        // So, initialize dp[0] with 0.

        dp[0] = 0;

 

        for (int i = 0; i <= n; i++)

        {

            // If the certain length is not possible, skip it.

            if (dp[i] == -1)

                continue;

 

            // If a segment of x is possible, update the number of cuts at the next length.

            if (i + x <= n)

                dp[i + x] = max(dp[i + x], dp[i] + 1);

 

            // If a segment of y is possible, update the number of cuts at the next length.

            if (i + y <= n)

                dp[i + y] = max(dp[i + y], dp[i] + 1);

 

            // If a segment of z is possible, update the number of cuts at the next length.

            if (i + z <= n)

                dp[i + z] = max(dp[i + z], dp[i] + 1);

        }

 

        // If no segment can be cut, return 0.

        if (dp[n] == -1)

            dp[n] = 0;

 

        // Return the number of cuts corresponding to length n.

        return dp[n];

    }

};

 

int main()

{

    // Taking the length of the line segment

    int n;

    cin >> n;

 

    // Taking the types of segments

    int x, y, z;

    cin >> x >> y >> z;

 

    Solution obj;

    // Calling the maximizeTheCuts() function

    cout << obj.maximizeTheCuts(n, x, y, z) << endl;

 

    return 0;

}

 

Conclusion:

In this article, we explored the Maximizing Line Segment Cuts algorithm. By using dynamic programming, we can efficiently determine the maximum number of cuts possible for a given line segment length. We discussed the approach, provided a step-by-step algorithm, and illustrated it with examples. This algorithm allows us to find an optimal solution and can be applied to similar problems involving maximizing the number of cuts.

Previous Post Next Post